The chemistry of fats – part 2
Understanding the Chemistry of Fats
Ref: http://www.westonaprice.org/know-your-fats/the-skinny-on-fats/#hd
The Cause and Treatment of Heart Disease
The cause of heart disease is not animal fats and cholesterol but rather a number of factors inherent in modern diets, including
- excess consumption of vegetables oils and hydrogenated fats;
- excess consumption of refined carbohydrates in the form of sugar and white flour;
- mineral deficiencies, particularly low levels of protective magnesium and iodine;
- deficiencies of vitamins, particularly of vitamin C, needed for the integrity of the blood vessel walls, and of antioxidants like selenium and vitamin E, which protect us from free radicals; and, finally,
- the disappearance of antimicrobial fats from the food supply, namely, animal fats and tropical oils. These once protected us against the kinds of viruses and bacteria that have been associated with the onset of pathogenic plaque leading to heart disease.
While serum cholesterol levels provide an inaccurate indication of future heart disease, a high level of a substance called homocysteine in the blood has been positively correlated with pathological buildup of plaque in the arteries and the tendency to form clots-a deadly combination.
Folic acid, vitamin B6, vitamin B12 and choline are nutrients that lower serum homocysteine levels. These nutrients are found mostly in animal foods.
The best way to treat heart disease, then, is not to focus on lowering cholesterol-either by drugs or diet-but
- to consume a diet that provides animal foods rich in vitamins B6 and B12;
- to bolster thyroid function by daily use of natural sea salt, a good source of usable iodine;
- to avoid vitamin and mineral deficiencies that make the artery walls more prone to ruptures and the buildup of plaque;
- to include the antimicrobial fats in the diet; and
- to eliminate processed foods containing refined carbohydrates, oxidized cholesterol and free-radical-containing vegetable oils that cause the body to need constant repair.
Modern Methods of Processing Fats
It is important to understand that, of all substances ingested by the body, it is polyunsaturated oils that are most easily rendered dangerous by food processing, especially unstable omega-3 linolenic acid. Consider the following processes inflicted upon naturally occurring fatty acids before they appear on our tables:
Extraction:
Oils naturally occurring in fruits, nuts and seeds must first be extracted. In the old days this extraction was achieved by slow-moving stone presses. But oils processed in large factories are obtained by crushing the oil-bearing seeds and heating them to 230 degrees. The oil is then squeezed out at pressures from 10 to 20 tons per inch, thereby generating more heat. During this process the oils are exposed to damaging light and oxygen. In order to extract the last 10% or so of the oil from crushed seeds, processors treat the pulp with one of a number of solvents-usually hexane. The solvent is then boiled off, although up to 100 parts per million may remain in the oil. Such solvents, themselves toxic, also retain the toxic pesticides adhering to seeds and grains before processing begins.
High-temperature processing causes the weak carbon bonds of unsaturated fatty acids, especially triple unsaturated linolenic acid, to break apart, thereby creating dangerous free radicals. In addition, antioxidants, such as fat-soluble vitamin E, which protect the body from the ravages of free radicals, are neutralized or destroyed by high temperatures and pressures. BHT and BHA, both suspected of causing cancer and brain damage, are often added to these oils to replace vitamin E and other natural preservatives destroyed by heat.
There is a safe modern technique for extraction that drills into the seeds and extracts the oil and its precious cargo of antioxidants under low temperatures, with minimal exposure to light and oxygen. These expeller-expressed, unrefined oils will remain fresh for a long time if stored in the refrigerator in dark bottles. Extra virgin olive oil is produced by crushing olives between stone or steel rollers. This process is a gentle one that preserves the integrity of the fatty acids and the numerous natural preservatives in olive oil. If olive oil is packaged in opaque containers, it will retain its freshness and precious store of antioxidants for many years.
Hydrogenation:
This is the process that turns polyunsaturates, normally liquid at room temperature, into fats that are solid at room temperature-margarine and shortening.
To produce them, manufacturers begin with the cheapest oils-soy, corn, cottonseed or canola, already rancid from the extraction process (described above) and mix them with tiny metal particles-usually nickel oxide. The oil with its nickel catalyst is then subjected to hydrogen gas in a high-pressure, high-temperature reactor. Next, soap-like emulsifiers and starch are squeezed into the mixture to give it a better consistency; the oil is yet again subjected to high temperatures when it is steam-cleaned. This removes its unpleasant odor. Margarine’s natural color, an unappetizing grey, is removed by bleach. Dyes and strong flavors must then be added to make it resemble butter. Finally, the mixture is compressed and packaged in blocks or tubs and sold as a health food.
Partially hydrogenated margarines and shortenings are even worse for you than the highly refined vegetable oils from which they are made because of chemical changes that occur during the hydrogenation process. Under high temperatures, the nickel catalyst causes the hydrogen atoms to change position on the fatty acid chain.
Before hydrogenation, the oil is a cis formation, the configuration most commonly found in nature. With hydrogenation, the molecule is transformed into a transformation, rarely found in nature.
Most of these man-made trans fats are toxins to the body, but unfortunately your digestive system does not recognize them as such. Instead of being eliminated, trans fats are incorporated into cell membranes as if they were cis fats so your cells actually become partially hydrogenated!
Once in place, trans fatty acids with their misplaced hydrogen atoms wreak havoc in cell metabolism because chemical reactions can only take place when electrons in the cell membranes are in certain arrangements or patterns, which the hydrogenation process has disturbed.
In the 1940’s, researchers found a strong correlation between cancer and the consumption of fat-the fats used were hydrogenated fats although the results were presented as though the culprit were saturated fats. In fact, until recently saturated fats were usually lumped together withtrans fats in the various U.S. data bases that researchers use to correlate dietary trends with disease conditions. Thus, natural saturated fats were tarred with the black brush of unnatural hydrogenated vegetable oils.
Altered partially hydrogenated fats made from vegetable oils actually block utilization of essential fatty acids, causing many deleterious effects including sexual dysfunction, increased blood cholesterol and paralysis of the immune system.
Consumption of hydrogenated fats is associated with a host of other serious diseases, not only cancer but also atherosclerosis, diabetes, obesity, immune system dysfunction, low-birth-weight babies, birth defects, decreased visual acuity, sterility, difficulty in lactation and problems with bones and tendons.
Yet hydrogenated fats continue to be promoted as health foods. The popularity of partially hydrogenated margarine over butter represents a triumph of advertising duplicity over common sense. Your best defence is to avoid it like the plague.
Homogenization:
This is the process whereby the fat particles of cream are strained through tiny pores under great pressure. The resulting fat particles are so small that they stay in suspension rather than rise to the top of the milk. This makes the fat and cholesterol more susceptible to rancidity and oxidation, and some research indicates that homogenized fats may contribute to heart disease.
The media’s constant attack on saturated fats is extremely suspect. Claims that butter causes chronic high cholesterol values have not been substantiated by research, although some studies show that butter consumption causes a small, temporary rise-while other studies have shown that stearic acid, the main component of beef fat, actually lowers cholesterol.
Margarine, on the other hand, provokes chronic high levels of cholesterol and has been linked to both heart disease and cancer. The new soft margarines or tub spreads, while lower in hydrogenated fats, are still produced from rancid vegetable oils and contain many additives.
Nutrients in Butter
The Diet Dictocrats have succeeded in convincing Americans that butter is dangerous, when in fact it is a valued component of many traditional diets and a source of the following nutrients:
Fat-Soluble Vitamins: These include true vitamin A or retinol, vitamin D, vitamin K and vitamin E as well as all their naturally occurring cofactors needed to obtain maximum effect. Butter is the best source of these important nutrients. In fact, vitamin A is more easily absorbed and utilized from butter than from other sources. Fortunately, these fat-soluble vitamins are relatively stable and survive the pasteurization process.
When Dr. Weston Price studied isolated traditional peoples around the world, he found that butter was a staple in many native diets. (He did not find any isolated peoples who consumed polyunsaturated oils.) The groups he studied particularly valued the deep yellow butter produced by cows feeding on rapidly growing green grass. When Dr. Price analyzed this deep yellow butter he found that it was exceptionally high in all fat-soluble vitamins, particularly vitamin A. He called these vitamins “catalysts” or “activators.” Without them, according to Dr. Price, we are not able to utilize the minerals we ingest, no matter how abundant they may be in our diets. He also believed the fat-soluble vitamins to be necessary for absorption of the water-soluble vitamins. Vitamins A and D are essential for growth, for healthy bones, for proper development of the brain and nervous systems and for normal sexual development. Many studies have shown the importance of butterfat for reproduction; its absence results in “nutritional castration,” the failure to bring out male and female sexual characteristics. As butter consumption in America has declined, sterility rates and problems with sexual development have increased. In calves, butter substitutes are unable to promote growth or sustain reproduction.
Not all the societies Dr. Price studied ate butter; but all the groups he observed went to great lengths to obtain foods high in fat-soluble vitamins – fish, shellfish, fish eggs, organ meats, blubber of sea animals and insects. Dr. Price analyzed the nutrient content of native diets and found that they consistently provided about ten times more fat soluble vitamins than the American diet of the 1930’s. This ratio is probably more extreme today as Americans have deliberately reduced animal fat consumption. American children in general do not eat fish or organ meats, at least not to any great extent, and blubber and insects are not a part of the western diet; many will not eat eggs. The only good source of fat-soluble vitamins in the American diet is butterfat. Butter added to vegetables and spread on bread, and cream added to soups and sauces, ensure proper assimilation of the minerals and water-soluble vitamins in vegetables, grains and meat.
The Wulzen Factor: Called the “antistiffness” factor, this compound is present in raw animal fat. Researcher Rosalind Wulzen discovered that this substance protects humans and animals from calcification of the joints-degenerative arthritis. It also protects against hardening of the arteries, cataracts and calcification of the pineal gland. Calves fed pasteurized milk or skim milk develop joint stiffness and do not thrive. Their symptoms are reversed when raw butterfat is added to the diet. Pasteurization destroys the Wulzen factor-it is present only in raw butter, cream and whole milk.
The Price Factor or Activator X: Discovered by Dr. Price, Activator X is a powerful catalyst which, like vitamins A and D, helps the body absorb and utilize minerals. It is found in organ meats from grazing animals and some sea food. Butter can be an especially rich source of Activator X when it comes from cows eating rapidly growing grass in the spring and fall seasons. It disappears in cows fed cottonseed meal or high protein soy-based feeds. Activator X is not destroyed by pasteurization. Activator X is now believed to be the fat-soluble vitamin K2;
Arachidonic Acid: A 20-carbon polyunsaturate containing four double bonds, found in small amounts only in animal fats. Arachidonic acid (AA) plays a role in the function of the brain, is a vital component of the cell membranes and is a precursor to important prostaglandins. Prostaglandins that counteract inflammation are also made from AA.
Short- and Medium-Chain Fatty Acids: Butter contains about 12-15% short- and medium-chain fatty acids. This type of saturated fat does not need to be emulsified by bile salts but is absorbed directly from the small intestine to the liver, where it is converted into quick energy. These fatty acids also have antimicrobial, anti-tumor and immune-system-supporting properties, especially 12-carbon lauric acid, a medium-chain fatty acid not found in other animal fats. Highly protective lauric acid should be called a conditionally essential fatty acid because it is made only by the mammary gland and not in the liver like other saturated fats.65 We must obtain it from one of two dietary sources – small amounts in butterfat or large amounts in coconut oil. Four-carbon butyric acid is all but unique to butter. It has antifungal properties as well as anti-tumor effects.
Omega-6 and Omega-3 Essential Fatty Acids: These occur in butter in small but nearly equal amounts. This excellent balance between linoleic and linolenic acid prevents the kind of problems associated with overconsumption of omega-6 fatty acids.
Conjugated Linoleic Acid: Butter from pasture-fed cows also contains a form of rearranged linoleic acid called CLA, which has strong anti-cancer properties. It also encourages the buildup of muscle and prevents weight gain. CLA disappears when cows are fed dry hay or processed feed.
Lecithin: Lecithin is a natural component of butter that assists in the proper assimilation and metabolization of cholesterol and other fat constituents.
Cholesterol: Mother’s milk is high in cholesterol because it is essential for growth and development. Cholesterol is also needed to produce a variety of steroids that protect against cancer, heart disease and mental illness.
Glycosphingolipids: This type of fat protects against gastrointestinal infections, especially in the very young and the elderly. For this reason, children who drink skimmed milk have diarrhea at rates three to five times greater than children who drink whole milk.
Trace Minerals: Many trace minerals are incorporated into the fat globule membrane of butterfat, including manganese, zinc, chromium and iodine. In mountainous areas far from the sea, iodine in butter protects against goiter. Butter is extremely rich in selenium, a trace mineral with antioxidant properties, containing more per gram than herring or wheat germ.
One frequently voiced objection to the consumption of butter and other animal fats is that they tend to accumulate environmental poisons. Fat-soluble poisons such as DDT do accumulate in fats; but water-soluble poisons, such as antibiotics and growth hormones, accumulate in the water fraction of milk and meats. Vegetables and grains also accumulate poisons. The average plant crop receives ten applications of pesticides – from planting to storage – while grass fed cows generally graze on pasture that is unsprayed.
Aflatoxin, a fungus that grows on grain, is one of the most powerful carcinogens known. It is correct to assume that all of our foods, whether of vegetable or animal origin, may be contaminated. The solution to environmental poisons is not to eliminate animal fats – essential to growth, reproduction and overall health – but to seek out organic meats and butter from pasture-fed cows, as well as organic vegetables and grains.
Composition of Different Fats
Before leaving this complex but vital subject of fats, it is worthwhile examining the composition of vegetable oils and other animal fats in order to determine their usefulness and appropriateness in food preparation:
Duck and Goose Fat are semisolid at room temperature, containing about 35% saturated fat, 52% monounsaturated fat (including small amounts of antimicrobial palmitoleic acid) and about 13% polyunsaturated fat. The proportion of omega-6 to omega-3 fatty acids depends on what the birds have eaten. Duck and goose fat are quite stable and are highly prized in Europe for frying potatoes.
Chicken Fat is about 31% saturated, 49% monounsaturated (including moderate amounts of antimicrobial palmitoleic acid) and 20% polyunsaturated, most of which is omega-6 linoleic acid, although the amount of omega-3 can be raised by feeding chickens flax or fish meal, or allowing them to range free and eat insects. Although widely used for frying in kosher kitchens, it is inferior to duck and goose fat, which were traditionally preferred to chicken fat in Jewish cooking.
Lard or pork fat is about 40% saturated, 48% monounsaturated (including small amounts of antimicrobial palmitoleic acid) and 12% polyunsaturated. Like the fat of birds, the amount of omega-6 and omega-3 fatty acids will vary in lard according to what has been fed to the pigs. In the tropics, lard may also be a source of lauric acid if the pigs have eaten coconuts. Like duck and goose fat, lard is stable and a preferred fat for frying. It was widely used in America at the turn of the century. It is a good source of vitamin D, especially in third-world countries where other animal foods are likely to be expensive. Some researchers believe that pork products should be avoided because they may contribute to cancer. Others suggest that only pork meat presents a problem and that pig fat in the form of lard is safe and healthy.
Beef and Mutton Tallows are 50-55% saturated, about 40% monounsaturated and contain small amounts of the polyunsaturates, usually less than 3%. Suet, which is the fat from the cavity of the animal, is 70-80% saturated. Suet and tallow are very stable fats and can be used for frying. Traditional cultures valued these fats for their health benefits. They are a good source of antimicrobial palmitoleic acid.
Olive Oil contains 75% oleic acid, the stable monounsaturated fat, along with 13% saturated fat, 10% omega-6 linoleic acid and 2% omega-3 linolenic acid. The high percentage of oleic acid makes olive oil ideal for salads and for cooking at moderate temperatures. Extra virgin olive oil is also rich in antioxidants. It should be cloudy, indicating that it has not been filtered, and have a golden yellow color, indicating that it is made from fully ripened olives. Olive oil has withstood the test of time; it is the safest vegetable oil you can use when cold-pressed, but don’t overdo. The longer chain fatty acids found in olive oil are more likely to contribute to the buildup of body fat than the short- and medium-chain fatty acids found in butter, coconut oil or palm kernel oil.
Peanut Oil contains 48% oleic acid, 18% saturated fat and 34% omega-6 linoleic acid. Like olive oil, peanut oil is relatively stable and, therefore, appropriate for stir-frys on occasion. But the high percentage of omega-6 presents a potential danger, so use of peanut oil should be strictly limited.
Sesame Oil contains 42% oleic acid, 15% saturated fat, and 43% omega-6 linoleic acid. Sesame oil is similar in composition to peanut oil. It can be used for frying because it contains unique antioxidants that are not destroyed by heat. However, the high percentage of omega-6 militates against exclusive use.
Safflower, Corn, Sunflower, Soybean and Cottonseed Oils all contain over 50% omega-6 and, except for soybean oil, only minimal amounts of omega-3. Safflower oil contains almost 80% omega-6. Researchers are just beginning to discover the dangers of excess omega-6 oils in the diet, whether rancid or not. Use of these oils should be strictly limited. They should never be consumed after they have been heated, as in cooking, frying or baking. High oleic safflower and sunflower oils, produced from hybrid plants, have a composition similar to olive oil, namely, high amounts of oleic acid and only small amounts of polyunsaturated fatty acids and, thus, are more stable than traditional varieties. However, it is difficult to find truly cold-pressed versions of these oils.
Canola Oil contains 5% saturated fat, 57% oleic acid, 23% omega-6 and 10%-15% omega-3. The newest oil on the market, canola oil was developed from the rape seed, a member of the mustard family. Rape seed is unsuited to human consumption because it contains a very-long-chain fatty acid called erucic acid, which under some circumstances is associated with fibrotic heart lesions. Canola oil was bred to contain little if any erucic acid and has drawn the attention of nutritionists because of its high oleic acid content. But there are some indications that canola oil presents dangers of its own. It has a high sulphur content and goes rancid easily. Baked goods made with canola oil develop mold very quickly. During the deodorizing process, the omega-3 fatty acids of processed canola oil are transformed into trans fatty acids, similar to those in margarine and possibly more dangerous. A recent study indicates that “heart healthy” canola oil actually creates a deficiency of vitamin E, a vitamin required for a healthy cardiovascular system. Other studies indicate that even low-erucic-acid canola oil causes heart lesions, particularly when the diet is low in saturated fat.
Flax Seed Oil contains 9% saturated fatty acids, 18% oleic acid, 16% omega-6 and 57% omega-3. With its extremely high omega-3 content, flax seed oil provides a remedy for the omega-6/omega-3 imbalance so prevalent in America today. Not surprisingly, Scandinavian folk lore values flax seed oil as a health food. New extraction and bottling methods have minimized rancidity problems. It should always be kept refrigerated, never heated, and consumed in small amounts in salad dressings and spreads.
Tropical Oils are more saturated than other vegetable oils.
- Palm oil is about 50% saturated, with 41% oleic acid and about 9% linoleic acid.
- Coconut oil is 92% saturated with over two-thirds of the saturated fat in the form of medium-chain fatty acids (often called medium-chain triglycerides). Of particular interest is lauric acid, found in large quantities in both coconut oil and in mother’s milk. This fatty acid has strong antifungal and antimicrobial properties. Coconut oil protects tropical populations from bacteria and fungus so prevalent in their food supply; as third-world nations in tropical areas have switched to polyunsaturated vegetable oils, the incidence of intestinal disorders and immune deficiency diseases has increased dramatically. Because coconut oil contains lauric acid, it is often used in baby formulas.
- Palm kernel oil, used primarily in candy coatings, also contains high levels of lauric acid. These oils are extremely stable and can be kept at room temperature for many months without becoming rancid. Highly saturated tropical oils do not contribute to heart disease. It is a shame we do not use these oils for cooking and baking – the bad rap they have received is the result of intense lobbying by the domestic vegetable oil industry.
- Red palm oil has a strong taste that most will find disagreeable – although it is used extensively throughout Africa – but clarified palm oil, which is tasteless and white in color, was formerly used as shortening and in the production of commercial French fries, while coconut oil was used in cookies, crackers and pastries.
The saturated fat scare has forced manufacturers to abandon these safe and healthy oils in favor of hydrogenated soybean, corn, canola and cottonseed oils.
Summary
In summary, our choice of fats and oils is one of extreme importance. Most people, especially infants and growing children, benefit from more fat in the diet rather than less. But the fats we eat must be chosen with care. Avoid all processed foods containing hydrogenated fats and polyunsaturated oils. Instead, use traditional cold-pressed vegetable oils like extra virgin olive oil and small amounts of unrefined flax seed oil. Acquaint yourself with the merits of coconut oil for baking and with animal fats for occasional frying. Eat egg yolks and other animal fats with the proteins to which they are attached. And, finally, use as much organic butter as you like, with the happy assurance that it is a wholesome-indeed, an essential-food for you and your whole family.
About the Authors:
Mary G. Enig, Ph.D. is an expert of international renown in the field of lipid biochemistry. She has headed a number of studies on the content and effects of trans fatty acids in America and Israel, and has successfully challenged government assertions that dietary animal fat causes cancer and heart disease. Recent scientific and media attention on the possible adverse health effects of trans fatty acids has brought increased attention to her work. She is a licensed nutritionist, certified by the Certification Board for Nutrition Specialists, a qualified expert witness, nutrition consultant to individuals, industry and state and federal governments, contributing editor to a number of scientific publications, Fellow of the American College of Nutrition and President of the Maryland Nutritionists Association. She is the author of over 60 technical papers and presentations, as well as a popular lecturer. Dr. Enig is currently working on the exploratory development of an adjunct therapy for AIDS using complete medium chain saturated fatty acids from whole foods. She is the mother of three healthy children brought up on whole foods including butter, cream, eggs and meat.
Sally Fallon is the author of Nourishing Traditions: The Cookbook that Challenges Politically Correct Nutrition and the Diet Dictocrats (with Mary G. Enig, PhD), a well-researched, thought-provoking guide to traditional foods with a startling message: Animal fats and cholesterol are not villains but vital factors in the diet, necessary for normal growth, proper function of the brain and nervous system, protection from disease and optimum energy levels. She joined forces with Enig again to writeEat Fat, Lose Fat, and has authored numerous articles on the subject of diet and health. The President of the Weston A. Price Foundation and founder of A Campaign for Real Milk, Sally is also a journalist, chef, nutrition researcher, homemaker, and community activist. Her four healthy children were raised on whole foods including butter, cream, eggs and meat.